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Linear Model Selection and Regularization
 Recall the linear model (Can also apply to GLM)

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 + 𝜖𝜖

 In the lectures that follow, we consider some approaches for extending the 
linear model framework. In the lectures covering Chapter 7 of the text, we 
generalize the linear model in order to accommodate non-linear, but still 
additive, relationships

 In the lectures covering Chapter 8 and 9 we consider even more general non-
linear models
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In praise of linear models!
 Despite its simplicity, the linear model has distinct advantages in terms of its 

interpretability and often shows good predictive performance
 Hence we discuss in this lecture some ways in which the simple linear model can be 

improved, by replacing ordinary least squares fitting with some alternative fitting 
procedures

 This often applies to the case when 𝑛𝑛 ≈ 𝑝𝑝 or 𝑝𝑝 > 𝑛𝑛

3



Why consider alternatives to least squares?
1. Prediction Accuracy: especially when 𝑝𝑝 > 𝑛𝑛 or 𝑝𝑝 ≈ 𝑛𝑛, to control the 

variance
2. Model Interpretability: By removing irrelevant or redundant features – that 

is, by setting the corresponding coefficient estimates to zero – we can obtain 
a model that is more easily interpreted. We will present some approaches for 
automatically performing feature selection

3. Speed up the training/inference
4. Avoid the curse of dimensionality
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Three classes of methods
1. Subset Selection: We identify a subset of the 𝑝𝑝 predictors that we believe to 

be related to the response. We then fit a model using least squares on the 
reduced set of variables

2. Shrinkage: We fit a model involving all 𝑝𝑝 predictors, but the estimated 
coefficients are shrunken towards zero relative to the least squares estimates. 
This shrinkage (also known as regularization) has the effect of reducing 
variance and can also perform variable selection

3. Dimension Reduction: We project the 𝑝𝑝 predictors into a 𝑀𝑀-dimensional 
subspace, where 𝑀𝑀 < 𝑝𝑝. This is achieved by computing 𝑀𝑀 different linear 
combinations, or projections, of the variables. Then these 𝑀𝑀 projections are 
used as predictors to fit a linear regression model by least squares
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1. Subset Selection
Best subset selection procedures

1. Let 𝑀𝑀0 denote the null model, which contains no predictors. This model 
simply predicts the sample mean for each observation

2. For 𝑘𝑘 = 1,2, … 𝑝𝑝: 
a) Fit all 𝑝𝑝

𝑘𝑘 models that contain exactly 𝑘𝑘 predictors
b) Pick the best among these 𝑝𝑝

𝑘𝑘 models, and call it 𝑀𝑀𝑘𝑘. Here best is defined as having the 
smallest RSS, or equivalently largest 𝑅𝑅2

3. Select a single best model from among 𝑀𝑀0, … ,𝑀𝑀𝑝𝑝 using cross-validated 
prediction error, 𝐶𝐶𝑝𝑝 (AIC), BIC, or adjusted 𝑅𝑅2
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Example - Credit card data set
 For each possible model containing a subset of the ten predictors in the credit 

card dataset, the RSS and 𝑅𝑅2 are displayed
 Though the data set contains only ten predictors, the 𝑥𝑥-axis ranges from 1 to 11, since one 

of the variables is categorical and takes on three values, leading to the creation of two 
dummy variables

 The red frontier tracks the best model for a given number of predictors
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Extensions to other models
 Although we have presented best subset selection here for least squares 

regression, the same ideas apply to other types of models, such as logistic 
regression

 The deviance - negative two times the maximized log-likelihood - plays the 
role of RSS for a broader class of models
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Stepwise Selection
X For computational reasons, best subset selection cannot be applied with very 

large 𝑝𝑝
X Best subset selection may also suffer from statistical problems when 𝑝𝑝 is large: 

larger the search space, the higher the chance of finding models that look good 
on the training data, even though they might not have any predictive power on 
future data
 Thus an enormous search space can lead to overfitting and high variance of the coefficient 

estimates
 For both of these reasons, stepwise methods, which explore a far more 

restricted set of models, are attractive alternatives to best subset selection
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Forward Stepwise Selection
 Forward stepwise selection begins with a model containing no predictors, and 

then adds predictors to the model, one-at-a-time, until all of the predictors are 
in the model

 In particular, at each step the variable that gives the greatest additional 
improvement to the fit is added to the model
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In Detail
Forward Stepwise Selection

1. Let 𝑀𝑀0 denote the null model, which contains no predictors
2. For 𝑘𝑘 = 0, … 𝑝𝑝 − 1: 

a) Consider all 𝑝𝑝 − 𝑘𝑘 models that augment the predictors in 𝑀𝑀𝑘𝑘 with one additional predictor
b) Choose the best among these 𝑝𝑝 − 𝑘𝑘 models, and call it 𝑀𝑀𝑘𝑘+1. Here best is defined as 

having the smallest RSS, or equivalently largest 𝑅𝑅2

3. Select a single best model from among 𝑀𝑀0, … ,𝑀𝑀𝑝𝑝 using cross-validated prediction 
error, 𝐶𝐶𝑝𝑝 (AIC), BIC, or adjusted 𝑅𝑅2
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Though forward stepwise selection considers 𝑝𝑝(𝑝𝑝+1)/2+1 models, it 
performs a guided search over model space, and so the effective model 
space considered contains substantially more than 𝑝𝑝(𝑝𝑝+1)/2+1 models



More on Forward Stepwise Selection
 The computational advantage over best subset selection is clear
 For high dimensional data with 𝑝𝑝 > 𝑛𝑛, the forward selection can still be applied by 

considering only 𝑀𝑀1, … ,𝑀𝑀𝑛𝑛, since each submodel fit with least square will not have unique 
solution for 𝑝𝑝 > 𝑛𝑛

X It is not guaranteed to find the best possible model (lowest training error) out 
of all 2𝑝𝑝 models containing subsets of the 𝑝𝑝 predictors
 Suppose that in a given data set with 𝑝𝑝 = 3 predictors, the best possible one-variable model 

contains 𝑋𝑋1, and the best possible two-variable model instead contains 𝑋𝑋2 and 𝑋𝑋3. Then 
forward stepwise selection will fail to select the best possible two-variable model, because 
𝑀𝑀1 will contain 𝑋𝑋1, so 𝑀𝑀2 must also contain 𝑋𝑋1 together with one additional variable
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Credit data example
 The first four selected models for best subset selection and forward stepwise 

selection on the Credit data set. The first three models are identical but the 
fourth models differ
 In this example, there is actually not much difference between the three and four-variable 

models in terms of RSS, so either of the four-variable models will likely be adequate
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Backward Stepwise Selection
 Like forward stepwise selection, backward stepwise selection provides an 

efficient alternative to best subset selection
 However, unlike forward stepwise selection, it begins with the full least 

squares model containing all 𝑝𝑝 predictors, and then iteratively removes the 
least useful predictor, one-at-a-time
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Backward Stepwise Selection: details
Backward Stepwise Selection

1. Let 𝑀𝑀𝑝𝑝 denote the full model, which contains all 𝑝𝑝 predictors 
2. For 𝑘𝑘 = 𝑝𝑝, 𝑝𝑝 − 1, … , 1: 

a) Consider all 𝑘𝑘 models that contain all but one of the predictors in 𝑀𝑀𝑘𝑘 , for a total of 𝑘𝑘 −
1 predictors

b) Choose the best among these 𝑘𝑘 models, and call it 𝑀𝑀𝑘𝑘−1. Here best is defined as having 
the smallest RSS, or equivalently largest 𝑅𝑅2

3. Select a single best model from among 𝑀𝑀0, … ,𝑀𝑀𝑝𝑝 using cross-validated 
prediction error, 𝐶𝐶𝑝𝑝 (AIC), BIC, or adjusted 𝑅𝑅2
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More on Backward Stepwise Selection
 Like forward stepwise selection, the backward selection approach searches 

through only 1 + 𝑝𝑝(𝑝𝑝 + 1)/2 models, and so can be applied in settings where 
𝑝𝑝 is too large to apply the best subset selection

X Backward selection requires that 𝑛𝑛 ≥ 𝑝𝑝 (so that the full model can be fit). In 
contrast, forward stepwise can be used even when 𝑛𝑛 < 𝑝𝑝, and so is the only 
viable subset method when 𝑝𝑝 is very large

X Like forward stepwise selection, backward stepwise selection is not guaranteed 
to yield the best (lowest training error) model containing a subset of the 𝑝𝑝
predictors
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Choosing the Optimal Model
 The model containing all of the predictors will always have the smallest RSS 

and the largest 𝑅𝑅2, since these quantities are related to the training error
 We wish to choose a model with low test error, not a model with low training error. Recall 

that training error is usually a poor estimate of test error
 Therefore, RSS and 𝑅𝑅2 are not suitable for selecting the best model among a collection of 

models with different numbers of predictors

 Therefore
 We can directly estimate the test error, using either a validation set approach or a cross-

validation approach, as discussed in previous lectures
 We can indirectly estimate test error by making an adjustment to the training error to 

account for the bias due to overfitting
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Credit data example
 The figure displays 𝐶𝐶𝑝𝑝 (AIC), BIC, and adjusted 𝑅𝑅2 for the best model of each 

size produced by best subset selection on the Credit card data set
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Details on 𝐶𝐶𝑝𝑝 and AIC
 Mallow’s 𝐶𝐶𝑝𝑝 for estimated test MSE (for least square model):

𝐶𝐶𝑝𝑝 = 1
𝑛𝑛

(𝑅𝑅𝑅𝑅𝑅𝑅 + 2𝑑𝑑 �𝜎𝜎2) , �𝜎𝜎2 =
�𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛−𝑝𝑝−1

 where 𝑑𝑑 is the total # of parameters used and �𝜎𝜎2 is an estimate of the variance of the error  
𝜖𝜖 associated with each response measurement based on model containing all predictors

 The AIC (Akaike Information Criterion) is defined for a large class of models 
fit by maximum likelihood:

𝐴𝐴𝐴𝐴𝐶𝐶 = −2 log 𝐿𝐿 + 2 � 𝑑𝑑 =
1
𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅 + 2𝑑𝑑 �𝜎𝜎2 + 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶

 Where 𝐿𝐿 is the maximized value of the likelihood function for the estimated model
 In the case of the linear model with Gaussian errors, maximum likelihood and least squares 

are the same thing, and 𝐶𝐶𝑝𝑝 and AIC are equivalent
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Details on BIC
 BIC (Bayesian information criterion) is motivated in quite a different way. It 

arises in the Bayesian approach to model selection
𝐵𝐵𝐴𝐴𝐶𝐶 = −2 log 𝐿𝐿 + log 𝑛𝑛 𝑑𝑑 =

1
𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅 + log 𝑛𝑛 𝑑𝑑 �𝜎𝜎2 + 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶

 Like 𝐶𝐶𝑝𝑝, the BIC will tend to take on a small value for a model with a low test error, and so 
generally we select the model that has the lowest BIC value

 Notice that BIC replaces the 2𝑑𝑑 �𝜎𝜎2 used by 𝐶𝐶𝑝𝑝 with a log(𝑛𝑛)𝑑𝑑 �𝜎𝜎2 term, where 𝑛𝑛 is the 
number of observations. Since log𝑛𝑛 > 2 for any 𝑛𝑛 > 7, the BIC statistic generally places a 
heavier penalty on models with many variables, and hence results in the selection of 
smaller models than 𝐶𝐶𝑝𝑝
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Adjusted 𝑅𝑅2

 For a least squares model with 𝑑𝑑 variables, the adjusted 𝑅𝑅2 statistic is 
calculated as

𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝑑𝑑 𝑅𝑅2 = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅/(𝑛𝑛−𝑑𝑑−1)
𝑇𝑇𝑅𝑅𝑅𝑅/(𝑛𝑛−1)

(𝑅𝑅2 = 𝑇𝑇𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑅𝑅𝑅𝑅

= 1 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑅𝑅𝑅𝑅

)

where TSS= ∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − �𝑦𝑦)2 = ∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖)2 + ∑𝑖𝑖=1𝑛𝑛 ( �𝑦𝑦𝑖𝑖 − �𝑦𝑦)2 is the total sum of squares

 Maximizing the adjusted 𝑅𝑅2 is equivalent to minimizing 𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛−𝑑𝑑−1

. While RSS always 

decreases as the number of variables in the model increases, 𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛−𝑑𝑑−1

may increase or 
decrease, due to the presence of 𝑑𝑑 in the denominator

 Unlike the 𝑅𝑅2 statistic, the adjusted 𝑅𝑅2 statistic pays a price for the inclusion of 
unnecessary variables in the model

 Unlike 𝐶𝐶𝑝𝑝, AIC, and BIC, for which a small value indicates a model with a low test error, a 
large value of adjusted 𝑅𝑅2 indicates a model with a small test error
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Validation and cross-validation
 Each of the procedures returns a sequence of models 𝑀𝑀𝑘𝑘 indexed by model size 
𝑘𝑘 = 0,1,2 … . Our job here is to select �𝑘𝑘. Once selected, we return model 𝑀𝑀�𝑘𝑘
 We compute the validation set error or the cross-validation error for each model 𝑀𝑀𝑘𝑘 under 

consideration, and then select the 𝑘𝑘 for which the resulting estimated test error is smallest
 This procedure has an advantage relative to AIC, BIC, 𝐶𝐶𝑝𝑝, and adjusted 𝑅𝑅2, in that it 

provides a direct estimate of the test error: It can also be used in a wider range of model 
selection tasks, even in cases where it is hard to pinpoint the model degrees of freedom (e.g. 
the number of predictors in the model) or hard to estimate the error variance 𝜎𝜎2

X It needs computational power
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Credit data example
 The validation errors were calculated by randomly selecting three-quarters of the 

observations as the training set, and the remainder as the validation set
 The cross-validation errors were computed using 𝑘𝑘 = 10 folds
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One-standard-error rule
 All three approaches suggest that the four-, five-, and six-variable models are 

roughly equivalent in terms of their test errors
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 In this setting, we can select a model using the 
one-standard-error rule. We first calculate the 
standard error of the estimated test MSE for 
each model size, and then select the smallest 
model for which the estimated test error is 
within one standard error of the lowest point on 
the curve

https://www.cs.cmu.edu/~psarkar/sds383c_16/lecture9_scribe.pdf

https://www.cs.cmu.edu/%7Epsarkar/sds383c_16/lecture9_scribe.pdf


2. Shrinkage Methods
 Here we will discuss about Ridge regression and Lasso 
 The subset selection methods use least squares to fit a linear model that contains a subset of 

the predictors
 As an alternative, we can fit a model containing all 𝑝𝑝 predictors using a technique that 

constrains or regularizes the coefficient estimates, or equivalently, that shrinks the 
coefficient estimates towards zero

 It may not be immediately obvious why such a constraint should improve the fit, but it 
turns out that shrinking the coefficient estimates can significantly reduce their variance
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Ridge regression
 Recall that the least squares fitting procedure estimates 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 using the 

values that minimize

𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗)2

 In contrast, the ridge regression coefficient estimates �̂�𝛽𝜆𝜆
𝑅𝑅 are the values that 

minimize

�
𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗)2 + λ�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗2 = 𝑅𝑅𝑅𝑅𝑅𝑅 + λ�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗2

where λ ≥ 0 is a tuning parameter, to be determined separately
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Ridge regression: continued
 As with least squares, ridge regression seeks coefficient estimates that fit the 

data well, by making the RSS small
 However, the second term, λ∑𝑗𝑗 𝛽𝛽𝑗𝑗2 , called a shrinkage penalty, is small when 𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 are 

close to zero, and so it has the effect of shrinking the estimates of 𝛽𝛽𝑗𝑗 towards zero

 The tuning parameter λ serves to control the relative impact of these two terms 
on the regression coefficient estimates
 Selecting a good λ value for is critical; cross-validation is used for this
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Credit data example
 For all 10 features
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Details of Previous Figure
 In the left-hand panel, each curve corresponds to the ridge regression 

coefficient estimate for one of the ten variables, plotted as a function of λ
 The right-hand panel displays the same ridge coefficient estimates as the left-

hand panel, but instead of displaying on the 𝑥𝑥-axis, we now display 
��̂�𝛽λ

𝑅𝑅
2 �̂�𝛽 2 (0~1, shrinkage factor),where �̂�𝛽 denotes the vector of least 

squares coefficient estimates
 The notation 𝛽𝛽 2 denotes the 𝑙𝑙2 norm (pronounced “ell 2”) of a vector, and is defined as 

𝛽𝛽 2 = ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2
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Ridge regression: scaling of predictors
 The standard least squares coefficient estimates are scale equivalent: 

multiplying 𝑋𝑋𝑗𝑗 by a constant 𝑐𝑐 simply leads to a scaling of the least squares 
coefficient estimates by a factor of 1/𝑐𝑐. In other words, regardless of how the 
𝐴𝐴th predictor is scaled, 𝑋𝑋𝑗𝑗�̂�𝛽𝑗𝑗 will remain the same
 In contrast, the ridge regression coefficient estimates can change substantially when 

multiplying a given predictor by a constant, due to the sum of squared coefficients term in 
the penalty part of the ridge regression objective function

 Therefore, it is best to apply ridge regression after standardizing the predictors, using the 
formula (Same for the PLS in the following slides)

�𝑥𝑥𝑖𝑖𝑗𝑗 =
𝑥𝑥𝑖𝑖𝑗𝑗 − �̅�𝑥𝑗𝑗

1
𝑛𝑛∑𝑖𝑖=1

𝑛𝑛 (𝑥𝑥𝑖𝑖𝑗𝑗 − �̅�𝑥𝑗𝑗)2
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Why Does Ridge Regression Improve Over Least Squares?

 The Bias-Variance tradeoff
 Simulated data with 𝑛𝑛 = 50 observations, 𝑝𝑝 = 45 predictors, all having nonzero 

coefficients. Squared bias (black), variance (green), and test mean squared error (purple) 
for the ridge regression predictions on a simulated data set, as a function of λ and 

��̂�𝛽λ
𝑅𝑅

2 �̂�𝛽 2. The horizontal dashed lines indicate the minimum possible MSE. The purple 
crosses indicate the ridge regression models for which the MSE is smallest
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The Lasso (Least Absolute Shrinkage and Selection Operator)
X Ridge regression does have one obvious disadvantage: unlike subset selection, 

which will generally select models that involve just a subset of the variables, 
ridge regression will include all 𝑝𝑝 predictors in the final model

 The Lasso is a relatively recent alternative to ridge regression that overcomes 
this disadvantage. The lasso coefficients, �̂�𝛽λ

𝐿𝐿, minimize the quantity

�
𝑖𝑖=1

𝑛𝑛

(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�
𝑗𝑗=1

𝑝𝑝

𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗)2 + λ�
𝑗𝑗=1

𝑝𝑝

|𝛽𝛽𝑗𝑗| = 𝑅𝑅𝑅𝑅𝑅𝑅 + λ�
𝑗𝑗=1

𝑝𝑝

|𝛽𝛽𝑗𝑗|

In statistical parlance, the lasso uses an 𝑙𝑙1 norm (pronounced “ell 1”) penalty instead of an 𝑙𝑙2
penalty. The 𝑙𝑙1 norm of a coefficient vector 𝛽𝛽 is given by 𝛽𝛽 1 = ∑ |𝛽𝛽𝑗𝑗|
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The Lasso: continued
 As ridge regression, the lasso shrinks the coefficient estimates towards zero
 However, in the case of the lasso, the 𝑙𝑙1 penalty has the effect of forcing some of the 

coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently 
large. Hence, much like best subset selection, the lasso performs variable selection

 We say that the lasso yields sparse models - that is, models that involve only a 
subset of the variables
 As in ridge regression, selecting a good value of λ for the lasso is critical; cross-validation 

is again the method of choice
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Example: Credit dataset

34



The Variable Selection Property of the Lasso
 Why is it that the lasso, unlike ridge regression, results in coefficient estimates 

that are exactly equal to zero?
 One can show that the lasso and ridge regression coefficient estimates solve the 

problems (linked by the Lagrange multiplier)
min
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗)2 subject to ∑𝑗𝑗=1

𝑝𝑝 |𝛽𝛽𝑗𝑗| ≤ 𝐶𝐶

and
min
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗)2 subject to ∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗2 ≤ 𝐶𝐶

Respectively
 The best subset selection can be viewed as (ESL, ch3)

min
𝛽𝛽

∑𝑖𝑖=1𝑛𝑛 (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗)2 subject to ∑𝑗𝑗=1

𝑝𝑝 𝐴𝐴(𝛽𝛽𝑗𝑗 ≠ 0) ≤ 𝐶𝐶

Solving above formula is, however, computationally infeasible
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The Lasso Picture

36

contour of RSS

(budget) constraint by s
https://stats.stackexchange.com/questions/350046/the-graphical-intuiton-of-the-lasso-in-case-p-
2?noredirect=1&lq=1

Lasso Ridge

https://stats.stackexchange.com/questions/348308/graphical-interpretation-of-lasso
https://stats.stackexchange.com/questions/414491/understanding-lasso-regressions-sparsity-geometrically
https://stats.stackexchange.com/questions/348308/graphical-interpretation-of-lasso
https://stats.stackexchange.com/questions/350046/the-graphical-intuiton-of-the-lasso-in-case-p-2?noredirect=1&lq=1


More about intuition (exercise 6)
 Consider 𝑋𝑋 is a square diagonal matrix with its diagonal elements equal to 1 

and we omit the intercept for simplicity
 The least squares problem in this case is to minimized ∑𝑗𝑗=1

𝑝𝑝 (𝑦𝑦𝑗𝑗 − 𝛽𝛽𝑗𝑗)2 → �̂�𝛽𝑗𝑗 = 𝑦𝑦𝑗𝑗
 Ridge regression: ∑𝑗𝑗=1

𝑝𝑝 (𝑦𝑦𝑗𝑗 − 𝛽𝛽𝑗𝑗)2 + λ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 → �̂�𝛽𝑗𝑗𝑅𝑅 = 𝑦𝑦𝑗𝑗/(1 + λ)

 Lasso: ∑𝑗𝑗=1
𝑝𝑝 (𝑦𝑦𝑗𝑗 − 𝛽𝛽𝑗𝑗)2 + λ∑𝑗𝑗=1

𝑝𝑝 |𝛽𝛽𝑗𝑗| → �̂�𝛽𝑗𝑗𝐿𝐿 = �
𝑦𝑦𝑗𝑗 − ⁄λ 2 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 > ⁄λ 2
𝑦𝑦𝑗𝑗 + ⁄λ 2 𝑖𝑖𝑖𝑖 𝑦𝑦𝑗𝑗 < − ⁄λ 2

0 𝑖𝑖𝑖𝑖 |𝑦𝑦𝑗𝑗| ≤ ⁄λ 2
 Close-form solution available when features are uncorrelated for lasso
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More about intuition
 Left: The ridge regression coefficient estimates are shrunken proportionally 

towards zero, relative to the least squares estimates
 Right: The lasso coefficient estimates are soft-thresholded towards zero. In the 

case of a more general data matrix 𝑋𝑋 the main ideas still hold approximately
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Bayesian interpretation (exercise 7)
𝑝𝑝 𝛽𝛽 𝑋𝑋,𝑌𝑌 ∝ 𝑖𝑖 𝑌𝑌 𝑋𝑋,𝛽𝛽 𝑝𝑝(𝛽𝛽)

 We assume that 𝑝𝑝 𝛽𝛽 = ∏𝑗𝑗=1
𝑝𝑝 𝑔𝑔(𝛽𝛽𝑗𝑗) , for some density function 𝑔𝑔

 If 𝑔𝑔 is a Gaussian distribution with mean zero and standard deviation a function of 𝜆𝜆, then 
it follows that the posterior mode for 𝛽𝛽—that posterior is, the most likely value for 𝛽𝛽, 
given the data—is given by the ridge mode regression solution!

 If 𝑔𝑔 is a double-exponential (Laplace) distribution with mean zero and scale parameter a 
function of 𝜆𝜆, then it follows that the posterior mode for 𝛽𝛽 is the lasso solution!
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Comparing the Lasso and Ridge Regression
 Left: Plots of squared bias (black), variance (green), and test MSE (purple) for 

the lasso on simulated data set of Slide 31
 Right: Comparison of squared bias, variance and test MSE between lasso (solid) 

and ridge (dashed). Both are plotted against their 𝑅𝑅2 on the training data, as a 
common form of indexing
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Comparing the Lasso and Ridge Regression: continued
 Left: Plots of squared bias (black), variance (green), and test MSE (purple) for 

the lasso. The simulated data is similar to that in Slide 31, except that now only 
two predictors are related to the response

 Right: Comparison of squared bias, variance and test MSE between lasso (solid) 
and ridge (dashed). Both are plotted against their 𝑅𝑅2 on the training data, as a 
common form of indexing
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Short Conclusions
 These two examples illustrate that neither ridge regression nor the lasso will 

universally dominate the other
 In general, one might expect the lasso to perform better when the response is a 

function of only a relatively small number of predictors
 However, the number of predictors that is related to the response is never known a priori 

for real data sets. A technique such as cross-validation can be used in order to determine 
which approach is better on a particular data set
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Selecting the Tuning Parameter for Ridge Regression and Lasso
 As for subset selection, for ridge regression and lasso we require a method to 

determine which of the models under consideration is best
 That is, we require a method selecting a value for the tuning parameter λ or equivalently, 

the value of the constraint 𝐶𝐶
 Cross-validation provides a simple way to tackle this problem. We choose a 

grid of 𝜆𝜆 values, and compute the cross-validation error rate for each value of λ
 We then select the tuning parameter value for which the cross-validation error is smallest
 Finally, the model is re-fit using all of the available observations and the selected value of 

the tuning parameter
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Credit data example
 Left: LOOCV errors that result from applying ridge regression to the Credit 

data set with various values of λ
 Right: The coefficient estimates as a function of λ. The vertical dashed lines 

indicates the value of λ selected by cross-validation
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Simulated data example
 Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse 

simulated data set from Slide 41
 Right: The corresponding lasso coefficient estimates are displayed. The vertical 

dashed lines indicate the lasso fit for which the cross-validation error is 
smallest
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3. Dimension Reduction Methods
 The methods that we have discussed so far in this chapter have involved fitting 

linear regression models, via least squares or a shrunken approach, using the 
original predictors, 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝 or a subset of predictors

 We now explore a class of approaches that transform the predictors and then fit 
a least squares model using the transformed variables. We will refer to these 
techniques as dimension reduction methods
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Dimension Reduction Methods: details
 Let 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑀𝑀 represent 𝑀𝑀 < 𝑝𝑝 linear combinations of our original 𝑝𝑝

predictors. That is,
𝑍𝑍𝑚𝑚 = ∑𝑗𝑗=1

𝑝𝑝 𝛷𝛷𝑗𝑗𝑚𝑚 𝑋𝑋𝑗𝑗 for some constants 𝛷𝛷1𝑚𝑚, … ,𝛷𝛷𝑝𝑝𝑚𝑚
 We can then fit the linear regression model using ordinary least squares

𝑦𝑦𝑖𝑖 = 𝜃𝜃0 + �
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚𝑧𝑧𝑖𝑖𝑚𝑚 + 𝜖𝜖𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛

 Note that in the model, the regression coefficients are given by 𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑀𝑀. If 
the constants 𝛷𝛷1𝑚𝑚, … ,𝛷𝛷𝑝𝑝𝑚𝑚 are chosen wisely, then such dimension reduction 
approaches can often outperform OLS regression
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Dimension Reduction Methods: details
 Notice that from definition

�
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚𝑧𝑧𝑖𝑖𝑚𝑚 = �
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚�
𝑗𝑗=1

𝑝𝑝

𝛷𝛷𝑗𝑗𝑚𝑚 𝑥𝑥𝑖𝑖𝑗𝑗 = �
𝑗𝑗=1

𝑝𝑝
�
𝑚𝑚=1

𝑀𝑀

𝜃𝜃𝑚𝑚𝛷𝛷𝑗𝑗𝑚𝑚𝑥𝑥𝑖𝑖𝑗𝑗 = �
𝑗𝑗=1

𝑝𝑝
𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

Where 𝛽𝛽𝑗𝑗 = ∑𝑚𝑚=1
𝑀𝑀 𝜃𝜃𝑚𝑚𝛷𝛷𝑗𝑗𝑚𝑚

 Hence the model can be thought of as a special case of the original linear regression model
 Dimension reduction serves to constrain the estimated 𝛽𝛽𝑗𝑗 coefficients, since now they must 

take the above form. Can win in the bias-variance tradeoff!
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Principal Components Regression
 Here we apply principal components analysis (PCA) (discussed in Chapter 12 

of the text) to define the linear combinations of the predictors
 The first principal component is that (normalized) direction with the largest variance
 The second principal component score has largest variance, subject to being uncorrelated

with the first. And so on
 Hence with many correlated original variables, we replace them with a small set of 

uncorrelated principal components scores that capture their joint variation
 The principal components regression (PCR) approach involves constructing the 

first 𝑀𝑀 principal components scores, 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑀𝑀, and then using these 
components scores as the predictors in a linear regression model that is fit 
using least squares
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Pictures of PCA
 The population size (pop) and ad spending (ad) for 100 different cities are 

shown as purple circles. The green solid line indicates the first principal 
component, and the blue dashed line indicates the second principal component

50



Pictures of PCA: continued
 Left: The first principal component, chosen to minimize the sum of the squared 

perpendicular distances to each point, is shown in green. These distances are 
represented using the black dashed line segments

 Right: The left-hand panel has been rotated so that the first principal 
component lies on the 𝑥𝑥-axis (We need to standardized the data first)
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Pictures of PCA: continued
 Plots of the first principal component scores 𝑧𝑧𝑖𝑖1 versus pop and ad. The 

relationships are strong

 Plots of the second principal component scores 𝑧𝑧𝑖𝑖2 versus pop and ad. The 
relationships are weak
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Application to Principal Components Regression
 PCR was applied to two simulated data sets. The black, green, and purple lines 

correspond to squared bias, variance, and test mean squared error, respectively. 
Left: Simulated data from slide 31. Right: Simulated data from slide 41
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𝑛𝑛 = 50
𝑝𝑝 = 45 significant predictors

𝑛𝑛 = 50
𝑝𝑝 = 2 significant predictors



Application to Principal Components Regression
 PCR, ridge regression, and the lasso were applied to a simulated data set in 

which the first five principal components of 𝑋𝑋 contain all the information about 
the response 𝑌𝑌 (𝑀𝑀 = 5). Lasso (solid) and ridge (dashed)
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Choosing the number of directions 𝑀𝑀
 Left: PCR standardized coefficient estimates on the Credit data set for different 

values of 𝑀𝑀. Right: The 10-fold cross validation MSE obtained using PCR, as 
a function of 𝑀𝑀
 Note that we also standardizing each predictor before PCR
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Partial Least Squares
 PCR (dotted line) identifies linear combinations, or directions, that best 

represent the predictors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝
 These directions are identified in an unsupervised way, since the response 𝑌𝑌 is not used to 

help determine the principal component directions
 That is, the response does not supervise the identification of the principal components
 Consequently, PCR suffers from a potentially serious drawback: there is no guarantee that 

the directions that best explain the predictors will also be the best directions to use for 
predicting the response
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Partial Least Squares: continued
 Like PCR, PLS is a dimension reduction method, which first identifies a new 

set of features 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑀𝑀 that are linear combinations of the original 
features, and then fits a linear model via OLS using these 𝑀𝑀 new features
 But unlike PCR, PLS identifies these new features in a supervised way - that is, it makes 

use of the response 𝑌𝑌 in order to identify new features that not only approximate the old 
features well, but also that are related to the response

 Roughly speaking, the PLS approach attempts to find directions that help explain both the 
response and the predictors
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Details of Partial Least Squares
 After standardizing the 𝑝𝑝 predictors, PLS computes the first direction 𝑍𝑍1 by 

setting 𝛷𝛷𝑗𝑗1 equal to the coefficient from the simple linear regression of 𝑌𝑌 on 𝑋𝑋𝑗𝑗
 One can show that this coefficient is proportional to the correlation between 𝑌𝑌 and 𝑋𝑋𝑗𝑗. 

Hence, in computing 𝑍𝑍1 = ∑𝑗𝑗=1
𝑝𝑝 𝛷𝛷𝑗𝑗1 𝑋𝑋𝑗𝑗 PLS places the highest weight on the variables that 

are most strongly related to the response
 Subsequent directions are found by taking residuals and then repeating the above 

prescription (ESL 3.5)
 More comparison about PLS to OLS
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4. Consideration in high dimensions
 Left: Least squares regression in the low-dimensional setting
 Right: Least squares regression with 𝑛𝑛 = 2 observations and two parameters to 

be estimated (an intercept and a coefficient). IC can not work in this setting!
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Consideration in high dimensions
 On a simulated example with 𝑛𝑛 = 20 training observations, features that are 

completely unrelated to the outcome are added to the model
 Left: The 𝑅𝑅2 increases to 1 as more features are included. Center: The training set MSE 

decreases to 0 as more features are included
 Right: The test set MSE increases as more features are included
 This indicates the importance of evaluating model performance on an independent test set
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 The lasso was performed with 𝑛𝑛 = 100 observations and three values of 𝑝𝑝. Of 
the 𝑝𝑝 features, 20 were associated with the response. The boxplots show the 
test MSEs that result using three different values of the tuning parameter

1. Regularization or shrinkage plays a key role in high-dimensional problems
2. Appropriate tuning parameter selection is crucial for good predictive performance
3. The test error tends to increase as the dimensionality of the problem increases, unless the 

additional features are truly associated with the response
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Summary
 Model selection methods are an essential tool for data analysis, especially for 

big datasets involving many predictors
 Research into methods that give sparsity, such as the lasso is an especially hot 

area
 We should be careful when interpreting results in high dimensions
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Appendix
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Comparison between the methods
 𝛽𝛽1 = 4,𝛽𝛽2 = 2
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Review of Covariance Matrix
 Let 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 be length-𝑝𝑝 observation vectors

𝑥𝑥𝑖𝑖 =

𝑥𝑥𝑖𝑖1
𝑥𝑥𝑖𝑖2
⋮
𝑥𝑥𝑖𝑖𝑝𝑝

 Without Loss Of Generality (WLOG), let their mean be length-𝑝𝑝 0-vector
 Let the data matrix 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) be a 𝑝𝑝 by 𝑛𝑛 matrix
 The sample covariance matrix

𝑅𝑅 = ⁄𝑋𝑋𝑋𝑋𝑇𝑇 (𝑛𝑛 − 1) = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑇𝑇/(𝑛𝑛 − 1) = �
𝑖𝑖=1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑥𝑥𝑖𝑖 − �̅�𝑥)𝑇𝑇 /(𝑛𝑛 − 1)
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Review of  eigenvalue decomposition- Maximum variance 
formulation 
 Find a direction vector 𝐴𝐴1 ∈ 𝑅𝑅𝑝𝑝 and 𝐴𝐴1𝑇𝑇𝐴𝐴1 = 1 such that the variance of the 

projected data is maximized
1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 (𝐴𝐴1𝑇𝑇𝑥𝑥𝑖𝑖 − 𝐴𝐴1𝑇𝑇�̅�𝑥)2 = 𝐴𝐴1𝑇𝑇𝑅𝑅𝐴𝐴1

 To enforce the constraint, we introduce a  Lagrange multiplier denoted by λ1 and get the 
unconstrained maximization of 

𝐴𝐴1𝑇𝑇𝑅𝑅𝐴𝐴1 + λ1(1 − 𝐴𝐴1𝑇𝑇𝐴𝐴1) or maximize 𝑢𝑢
𝑇𝑇𝑅𝑅𝑢𝑢
𝑢𝑢𝑇𝑇𝑢𝑢

 By setting the derivative with respect to 𝐴𝐴1 equal to zero, we see that this quantity will 
have a stationary point when 

𝑅𝑅𝐴𝐴1 = λ1𝐴𝐴1
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Review of  eigenvalue decomposition- Maximum variance 
formulation 
 𝐴𝐴1 must be an eigenvector of 𝑅𝑅, if we left-multiply by 𝐴𝐴1𝑇𝑇 we get

𝐴𝐴1𝑇𝑇𝑅𝑅𝐴𝐴1 = λ1
 and so the variance will be a maximum when we set 𝐴𝐴1 equal to the eigenvector having the 

largest eigenvalue λ1. This eigenvector is known as the first principal component.

 We can define additional principal components in an incremental fashion by 
choosing each new direction to be that which maximizes the projected variance 
amongst all possible directions orthogonal to those already considered.
 In a 𝑟𝑟-dimensional projection space, we now consider the optimal linear projection for which 

the variance of the projected data is maximized is defined by the 𝑟𝑟 eigenvectors 𝐴𝐴1, … ,𝐴𝐴𝑟𝑟 of 
the data covariance matrix S corresponding to the 𝑟𝑟 largest eigenvalues λ1, … , λ𝑟𝑟. 
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Principal Component Analysis (PCA)  (1/2)
 If we collect eigenvectors and eigenvalues into matrix

𝑅𝑅𝑝𝑝×𝑝𝑝𝑈𝑈𝑝𝑝×𝑝𝑝 = 𝑈𝑈𝑝𝑝×𝑝𝑝Λ𝑝𝑝×𝑝𝑝
𝑅𝑅𝑝𝑝×𝑝𝑝 = 𝑈𝑈𝑝𝑝×𝑝𝑝Λ𝑝𝑝×𝑝𝑝𝑈𝑈𝑝𝑝×𝑝𝑝

𝑇𝑇

 Note 𝑋𝑋 = 𝑈𝑈𝑅𝑅𝑉𝑉𝑇𝑇
 Scores are 𝑈𝑈𝑇𝑇𝑋𝑋 = 𝑅𝑅𝑉𝑉𝑇𝑇

 It is equivalent to Minimum error formulation

𝑎𝑎𝑟𝑟𝑔𝑔𝑎𝑎𝑖𝑖𝑛𝑛𝑈𝑈𝜖𝜖 𝑂𝑂𝑝𝑝,𝑟𝑟 �
𝑖𝑖=1

𝑛𝑛

|(𝑋𝑋𝑖𝑖 − �𝑋𝑋) − 𝑈𝑈𝑈𝑈𝑇𝑇(𝑋𝑋𝑖𝑖 − �𝑋𝑋))|𝐹𝐹2
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𝑈𝑈 Principal component

Principal direction
Loading

Principal axis
Principal direction

𝑈𝑈𝑇𝑇𝑋𝑋 Principal component scores Principal component



Principal Component Analysis (PCA)  (2/2)
 Connection with SVD

S =
𝑋𝑋𝑋𝑋𝑇𝑇

𝑛𝑛 − 1 =
𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇𝑉𝑉𝑈𝑈𝑈𝑈𝑇𝑇

𝑛𝑛 − 1 = 𝑈𝑈
𝑈𝑈2

𝑛𝑛 − 1𝑈𝑈
𝑇𝑇 = 𝑈𝑈Λ𝑈𝑈𝑇𝑇

 In practice, we will often scale data before PCA 

 Whiten data matrix (identity covariance matrix)
 Λ−1/2𝑈𝑈𝑇𝑇X

 ZCA (Close to original data (often not reduce dimension))
 𝑈𝑈Λ−1/2𝑈𝑈𝑇𝑇X
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LAR and group Lasso in ESL
 Least Angle Regression
 https://scikit-learn.org/stable/modules/linear_model.html#least-angle-regression

 Group Lasso
 https://group-lasso.readthedocs.io/en/latest/

 Deviance
 https://stackoverflow.com/questions/50975774/calculate-residual-deviance-from-scikit-

learn-logistic-regression-model
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